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ABSTRACT
Aiming at the problem of driving scenarios redundancy in the lane
change decision-making, this paper proposes a deep reinforcement
learning method (DRL) for lane change decision based on embed-
ded attention mechanism (CADQN). The algorithm introduces the
Convolutional AttentionMechanismModule (CBAM) into the DQN
network to optimize the scenarios in time and space dimensions,
and assist connected vehicles in making lane changing decisions.
The algorithm is verified by the traffic simulation platform under
the highway environment, and the results show that CADQN is
helpful to improve the global traffic efficiency, and with the increase
of traffic flow density, the benefit is more significant. Moreover, the
visualization results of the attention layer in the CADQN can guide
the optimization of the driving scenario.
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1 INTRODUCTION
The two main microscopic behaviors of a vehicle during driving
are car following behavior and lane changing behavior [1]. Lane
changing behavior is the most influential behavior on traffic flow. It
is defined as: due to the influence of the surrounding vehicle driving
state or road condition information, the driver has the intention of
lane changing and changes the vehicle from the original lane to the
target lane. More macro driving behaviors, such as overtaking the
preceding vehicle and vehicle confluence, can be decomposed into
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the most microscopic car-following behavior and lane-changing
behavior for research. Literature [2-5] pointed out that the main
cause of traffic jams is caused by unreasonable or too frequent
lane changing operations. The reason is that when the vehicle
enters the target lane from the existing lane, such a lane change
action will make the vehicle a moving obstacle, resulting in reduced
highway capacity and safety [5] [6]. In addition, the number of
traffic accidents caused by inappropriate lane changes is about one-
tenth of the total number of accidents [7]. Therefore, studying the
method of lane change decision has far-reaching significance to the
improvement of traffic efficiency.

Lane changing decision model means that the driver decides
whether to produce lane changing intentions based on the expected
driving state (such as expected speed, acceleration, etc.) and the
state of surrounding traffic elements (such as the state of the car
following the car, the state of obstacles, road information, etc.)
model. The driver’s intention to change lanes is roughly divided
into two categories: mandatory lane change and arbitrary lane
change. Compulsory lane change refers to the driver’s intention to
change lanes when there are obstacles in front of the vehicle, roads
converge, and traffic rules restrict access to the target lane.

With the gradual development of real-scene traffic data collection
technology, since the early 1980s, vehicle lane changing decision
models have received more and more attention [8]. The lane change
model has a wide range of applications. Its main applications can
be roughly divided into two categories: adaptive cruise control and
computer simulation. The lane change model in adaptive cruise
control mainly focuses on the development of assisted driving mod-
els, which can be further divided into collision avoidance models
and autonomous driving models. The collision avoidance model
is used to control the driver’s lane changing operation and help
the driver complete the lane changing operation safely. The au-
tomation model is used to automatically adjust the steering wheel
angle of the vehicle to perform safe lane change operations [9-16].
For computer simulation applications, it is mainly to reproduce the
driver’s driving decision on the computer in order to restore the real
driving scenario. These lane changing models are mainly divided
into three categories: 1. Rule-based models, for example: Gibbs
[17] [18] proposed in 1986 the lane changing decision model on
highways and urban streets; 2. Discrete choice Models, for example:
Ahmed [19] [20] introduced the discrete choice model to the lane
changing decision problem and proposed a dynamic hierarchical
discrete choice model; 3. Artificial intelligence model, for example:
Hunt [21] used a neural network model on two lanes to predict the
driver’s lane change decision. In 2009, Dumbuya [22] and others
designed a neuro-driving agent to model lane changing behavior.
The network input is the current direction of the vehicle, the cur-
rent speed, the distance to the vehicle, the preferred speed and the
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current lane, and the output is the new direction and speed. The
training of the model is completed through the back propagation
algorithm. In 2016, Xin LI [23] introduced the Q-learning algorithm
of reinforcement learning to the overtaking decision problem of
unmanned vehicles under highways.

Deep reinforcement learning (DRL) is the fusion of the neural
network model and reinforcement learning model in machine learn-
ing. It uses a neural network model to replace the traditional tabular
function to fit the state-action value function, which greatly en-
riches the ability of the reinforcement learning agent to explore the
optimal solution in the infinite-dimensional state space. It is a useful
tool for studying and exploring the lane changing decision problem
with infinite dimensional state space [24]. The Connected vehicle
can provide self-driving vehicle decision makers with a relatively
complete perception of environmental conditions through sensors
and computer communications, and use deep reinforcement learn-
ing models to replace human drivers to explore the global optimal
lane changing strategy.

For the connected vehicle, the perceived driving environment is
provided by sensors, computer communication and other means.
These data will constitute a complex and huge but redundant driv-
ing environment state, which contains many redundant traffic el-
ements, such as convective vehicles and traffic light information
of the last intersection. The complex and redundant driving envi-
ronment makes it more difficult for the agent to find the optimal
solution of the decision. Therefore, this study introduces attention
mechanism into the state space of deep reinforcement learning to
complete the optimization of complex scenario redundancy, so as
to better assist the vehicle driving decision.

In conclusion, this study focuses on the lane change decision of
highway scenario. The scenario optimization model based on DRL
embeded attention mechanism is introduced to assist the vehicle to
make better driving decisions by reducing the redundancy of the
scenario. Finally, the performance of the algorithm is verified on the
simulation platform, and the visualization of scenario optimization
is realized. Strive to explore more safe, efficient, energy-saving
vehicle lane change driving decision-making.

2 MODELING OF LANE CHANGE DECISION
Before explaining the deep reinforcement learning decision-making
algorithm based on the embedded attention mechanism, it is neces-
sary to mathematically model the lane-changing decision problem
and turn it into a Markov decision process for reinforcement learn-
ing.

2.1 Markov Decision Process
Markov decision process is a mathematical description of decision
type. The core idea is memory-lessness, that is, the current decision
depends only on the current state, and has nothing to do with the
historical state and decision-making. The Markov decision-making
process uses five-tuples E =< S,A, P ,R,π >to describe. S is the state
space of the decision-making process task; A is the action space of
the decision-making process, P is the transition probability, which
is defined asP(S ×A− > S ′). That is, the probability of the current
state S transitioning to S ′under action A. For the decision-making
process strategy π , it determines the next action A in the state S. R is

the reward. The mathematical description of the memory-lessness
of Markov’s decision-making process is shown in equation (1).

P(St+1 = s ′ |St = st ,At = at , St−1 = st−1,At−1 = at−1, . . . S0 = s0)
= P(St+1 = s ′ |St = st ,At = at )

(1)

Gπ = Eπ [
T∑
t=0

γtRt ] (2)

The goal of reinforcement learning is to maximize the expected
value G of cumulative rewards by learning the optimal strategy π∗,
where γt is the attenuation factor. As shown in equation (2).

The lane changing decision problem can also be modeled as a
Markov decision problem. The vehicle makes a real-time decision A
according to the driving environment state S, and the environment
accepts the action A to transfer the state to S ′ and feeds back the
reward value R at the same time. The decision maker continuously
adjusts its own strategy π according to the reward value R to obtain
the optimal strategy. Next, the S, A, and R defined under the lane
change decision will be introduced.

2.2 State Space
When reinforcement learning is applied to vehicle lane changing
decision-making, there are usually three methods for vehicle envi-
ronment modeling. 1. Vehicle dynamics parameter vector represen-
tation; 2. Road network grid modeling; 3. Original image data of
simulation. The first two state spaces filter data according to hu-
man driving behavior, not the original environmental information.
In order to study the effect of attention mechanism on scenario
optimization, we use the third state space representation: the most
original frame of the simulation program. Because the simulation
platform is a color image, in order to reduce the overall calcula-
tion of the model, and the decision-making problem is not strongly
dependent on color, we do gray processing on the original image.
The weighted average method is used in gray processing, and its
mathematical expression is shown in equation 3.

I (x ,y) =Wr × Ir (x ,y) +Wд × Iд(x ,y) +Wb × Ib (x ,y) (3)

Irepresents the pixel value after grayscale processing.Wr ,Wд ,Wb
represent the conversion weights of red, green and blue.
Ir ,Iд ,Ib represent the pixel values of red, green and blue. In the
decision-making process, the speed information of vehicles in the
environment plays an important role in the decision-making pro-
cess, so we use continuous frames to represent the speed infor-
mation of vehicles in this period. Finally, we use continuous gray
frames as the state representation of lane change decision problem.
Figure 1 shows the states of three consecutive moments at the be-
ginning of simulation, in which each state contains information of
four consecutive moments.

2.3 Action Space
Actions represent decisions made by the vehicle based on the cur-
rent state. In order to compress the search space of the entire prob-
lem, we designed a discrete action space. In the final action space,
we divide lane-changing behavior into longitudinal and lateral di-
mensions for research.
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Figure 1: State Space Diagram.

In the longitudinal direction, the control of vehicle mainly adopts
adaptive cruise control. Its main three actions are: acceleration,
uniform speed and deceleration.

In the lateral direction, when vehicles change lanes, they mainly
take three actions: turn left to change lanes, keep lanes and change
lanes right. Considering the longitudinal and lateral dimensions,
the final action space is defined as five discrete actions: 1. No action;
2. Acceleration; 3. Deceleration; 4. Left lane change; 5. Right lane
change.

2.4 Reward Function
The reward function represents the score of an action in the current
environment. Since the objective function of reinforcement learning
is to maximize the cumulative reward, that is, equation 2, the design
of reward function determines the strategy learned by the agent.
In lane changing decision-making, the reward function represents
the score of a certain lane changing behavior, and the value of the
reward function is expected to exist both positive and negative,
which is convenient for the training of neural network. The design
of reward function determines the final training result.

For connected vehicles, they are connected with each other and
drive together as a whole. Compared with single agent intelligence,
the design of reward function not only considers the influence of the
planned vehicle itself, but also considers the influence on the overall
transportation system. So the reward function is divided into two
parts. Part of it comes from the improvement of system performance
by lane changing, and part of it comes from the improvement of
vehicle itself by lane changing. The form of reward function is
shown in equation 4.

Rtotal = w1Rsystem +w2Rindividual (4)

Rtotal represents the total reward, Rsystemrepresents the sys-
tem reward, Rindividual represents the individual reward,w1and
w2represent the weight coefficient corresponding to the reward.

For the system reward, this study considers the impact on the
original lane and the target lane at the same time. For the original
lane and the target lane, this paper selects the traffic density and the
average speed of road vehicles to represent the traffic efficiency of
the lane. Obviously, the smaller the traffic density is, the higher the
average speed of road vehicles is, the higher the traffic efficiency of

the system is. The overall expression of system reward is shown in
equation 5.

Rsystem = w11(Density
t arg et
bf − Density

t arg et
af )

+w12(Density
or iдinal
bf − Density

or iдinal
af )

+w13(v̄
t arg et
af − v̄

t arg et
bf )

+w14(v̄
or iдinal
af − v̄

or iдinal
bf )·

(5)

For the reward of individual vehicle, this paper considers the re-
ward of speed, collision penalty and lane change penalty. It has
its maximum speed for different lanes. However, vehicles in the
free driving state tend to drive at the maximum speed of the lane.
Therefore, the maximum speed of the lane is set to the desired
speed. The difference between the lane changing speed and the ex-
pected speed is used as a reward and normalized. Collision penalty
is used to punish collision behavior during lane changing. Due to
the fluctuation of traffic flow caused by lane changing, it is easy to
produce negative effects, so generally, lane changing behavior is not
encouraged, so lane changing penalty is introduced. In conclusion,
the individual reward function is equation 6.

Rindividual = α (vdes −v) /(vdes −vmin) + βRcol + γRlc (6)

α ,β ,γ are the corresponding weight coefficients, Rcol is the collision
penalty, and Rlc is the lane change penalty.

Rcol =

{
−Rcoll ifcollisionhappen

0otherwise (7)

Rlc =

{
−Rlanechanдe ifvehiclechangeslane

0otherwise (8)

3 DEEP REINFORCEMENT LEARNING
ALGORITHM EMBEDDED ATTENTION
MECHANISM

3.1 DQN
DQN is a powerful tool which combines traditional Q-learning
and deep learning[25]. Its main purpose is to solve the bottleneck
problem of using Q table to replace Q function in Q-learning algo-
rithm. In the original Q-learning algorithm, we need to maintain a
two-dimensional Q table at all times. The dimensions of the two-
dimensional Q table represent states and actions. But in reality, the
state space can’t be counted, and the simple Q table can’t express
it at all. So neural network is introduced to fit Q function. The
DQN network framework is shown in Figure 2, in which the q-eval
network adopts a multi-layer perceptron structure.

The whole network is composed of two networks with differ-
ent parameters but the same network structure, namely Q_EVAL
network and Q_TARGET network. Q_EVAL and Q_TARGET share
delay parameters. The Q_EVAL update formula of traditional Q-
learning algorithm is equation 9.

Q(s,a) ← Q(s,a) + α[R + γmax
a′

Q(s ′,a′) −Q(s,a)] (9)

Equation 9 can be regarded as an updated formula of gradient de-
scent. The loss function of DQN network is obtained by integrating
the right gradient term

L(θ ) = (R + γmax
a′

Q(s ′,a′ |θ−) −Q(s,a |θ ))2 (10)
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Figure 2: DQN Network.

Figure 3: Channel Attention.

γ is the discount factor, θ− is the parameter of Q_TARGET network,
θ is the parameter of Q_EVAL network.

3.2 Convolutional Block Attention Module
CBAM proposed by s woo [26] is used for attention tagging in
image classification tasks. It mainly combines channel attention
mechanism and spatial attention mechanism. Because the state
space uses four consecutive gray images. Therefore, this study
introduces CBAM to allocate the attention of the input image. It
aims at optimizing scenario in time and space.

Channel attention is to allocate attention on the channel for the
feature map. It means to pay attention to what kind of characteris-
tics are meaningful. In order to compress the information content
in a channel, the channel attention module adopts global average
pooling and global maximum pooling to compress the information,
as shown in Figure 3.

The size of the input feature map f is H×W×C. After global
maximum pooling and global average pooling, the compressed
vector with size of 1×1×C is obtained. The two vectors pass through
the multi-layer perceptron to get the 1×1×C feature vector. Finally,
two different feature vectors are added and the Relu activation
function is used to get the channel attention vector with the final
size of 1×1×C. Its mathematical expression is equation 11

Ac (F ) = δ (MLP(AvдPool(F ) +MLP(MaxPool(F ))) (11)

Spatial attention mechanism is to distribute attention in space,
which means to pay attention to which points on a feature map
are meaningful. Similar to channel attention mechanism, spatial
attentionmechanism adoptsmaximumpooling and average pooling
to compress information in channel dimension. As shown in Figure
4. The mathematical expression is 12

As (F ) = δ (f 7×7([AvдPool(F );MaxPool(F )])) (12)

Figure 4: Spatial Attention.

Figure 5: CADQN Structure.

3.3 CADQN
Based on the above-mentioned DQN network framework and
CBAM, this paper proposes a CADQN (Convolution Attention Deep
Q-network) network structure for lane change decision model. The
framework of CADQN model and DQN model is the same, which is
divided into Q_EVAL network and Q_TARGET network. The delay
parameters are shared between Q_EVAL network and Q_TARGET
network, and the network structure is the same. Therefore, only
one network structure is shown. The network structure of Q_EVAL
is shown in Figure 5

Four consecutive frames of gray-scale image F as the input, its
size is 128×128×4, through the channel attention mechanism mod-
ule, we get the channel attention vector of 1×1×4 and multiply it to
get F ′. The feature map F ′′ is obtained by the product of the spatial
attention and F ′.The mathematical expression process is equation
13,14.

F ′ = Ac (F ) ⊗ F (13)
F ′′ = As (F

′) ⊗ F ′ (14)
F ′′ as the input, through the module composed of three-layer con-
volution layer and Relu function, the final feature map of 6×6×64
is obtained. The design of convolution module is shown in Table 1.
Finally, the obtained feature map is expanded into one-dimensional
vector and the action Q value of 5×1×1 is obtained through three
full connected layers.

4 SIMULATION
4.1 Simulation Platform
In the part of algorithm verification, we use the traffic simulation
platform developed by Leurent [27]. The highway simulation envi-
ronment is selected to verify the algorithm. After parameter adjust-
ment, the whole highway environment is set as a 4-lane highway,
as shown in Figure 6.

The whole traffic simulation platform relies on Python’s Gym
library. In terms of vehicle control, the bottom control model of
the vehicle adopts the kinematic bicycle model for simulation; in
terms of lateral control of the vehicle, Leurent designs the steering



An Intelligent Lane Changing Decision Method for Connected Vehicles CSAE 2021, October 19–21, 2021, Sanya, China

Table 1: CADQN Convolution Module

Input Shape Kernel Num KernelSize Stride Output shape

128×128×4 32 8×8 4 31×31×32
31×31×32 64 4×4 2 14×14×64
14×14×64 64 3×3 1 6×6×64

Figure 6: Simulation Platform.

controller to track the designed target route; in terms of longitudinal
control, it adopts the intelligent driving model proposed by Treiber
et al. [28] in 2000. The top-level lane change decision is replaced
by the proposed CADQN model to verify the performance of the
algorithm.

4.2 Experimental Parameter Setting
This section mainly displays the operation parameters of the simu-
lation platform and the CADQN network training parameters, as
shown in Table 2 and table 3.

4.3 Algorithm Performance Comparison
In order to verify the performance of the proposed decision network
CADQN, we set up a comparative experiment with DQN. Observe
the change value of reward function with the increase of training
rounds under the same conditions. The training epoch occurred
during the simulation.Figure 7 shows the convergence curve of
the loss function of CADQN. The number of training rounds can
converge when the order of magnitude is 103.

At the same time, set the density of traffic flow under CADQN
and DQN decision network to 1200 vehicle / h. with the progress of
network training, the change curve of reward function is obtained,
as shown in Figure 8.

Both CADQN and DQN keep the greedy strategy. As a result,
the fluctuation range of reward value is very large, and the value
range covers each other. For the convenience of observation, we
calculate the average value of the curve of CADQN and DQN every

Figure 7: Loss Value in Training.

Figure 8: Reward Value in Training.

10 steps to get the curve of avgCADQN and avgDQN in the Figure
8. Analysis of Figure 8 shows that: in the early stage of training, the
reward values of the two networks are in a state of shock, and there
is little difference; in the late stage of training, CADQN network
can obtain higher reward values than DQN network. It can be

Table 2: Simulation Parameters

Parameter Value

Simulation Time 10000epoch
Frame Size 128×128
Decision Frequency 1Hz
Conversion Weights [0.2989,0.5870,0.1140]
Simulation Frequency 15Hz
Lane 4
Rcoll 10
Rlanechanдe 1
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Table 3: CADQN Parameters

Parameter Value

Learning Rate 0.005
Greedy Factor 0.9
Discount Factor 0.9
Replacement episode 50
Replay Memory Size 2000
Batch Size 32

Table 4: Travel Time Comparison

Traffic Density DQN CADQN Improvement

600vehicles/h 10.47s 10.29s 1.74%
800 vehicles /h 11.58s 10.96s 5.66%
1000 vehicles /h 12.03s 11.32s 6.27%
1200 vehicles /h 12.85s 11.73s 9.54%
1400 vehicles /h 13.88s 12.59s 10.24%
1600 vehicles /h 14.91s 13.64s 9.31%
1800 vehicles /h 16.11s 14.77s 9.07%

seen that the introduction of attention mechanism in the scenario
to allocate attention to traffic elements can indeed improve the
decision-making effect of vehicles compared with the same weight
of each traffic element.

In order to study the influence of different traffic density on
decision-making effect, we set up comparative experiments of
CADQN network and DQN network under different density. The
average travel time after network training is used as a comparison.
The experimental results are shown in Table 4.

According to the analysis of the experimental results in Table 4,
the performance of CADQN is better than that of DQN under differ-
ent traffic density. With the increase of traffic density, the effect is
gradually obvious, the increase percentage is not big at low density,
and the increase effect reaches the maximum at 1400 vehicles/h.
The value is between medium density and high density. The reason
is that with the increase of vehicle density, the traffic participants
in the scenario gradually increase. If attention mechanism is not
introduced, the attention of vehicles will be distracted by more and
more vehicles, that is, the weight of all vehicles is the same. But for
lane changing decision, it is obvious that the influence of vehicles
in the environment is different. With the increase of traffic volume,
this disadvantage is gradually enlarged, so the effect of CADQN is
getting better and better.

4.4 Attention Visualization
In order to explore the practical significance of attention, we extract
the attention layer of a scenario in the simulation process. The
visualization is realized by using heat map. Observe the results of
scenario optimization. The visualization example is shown in Figure
9. From the heat map in Figure 9, we can see that the attention
mechanism not only optimizes the scenario redundancy, but also
strengthens the blind spots in the perception field that we don’t
pay attention to in our usual driving habits.

In Figure 9, the mapping relationship between the value of atten-
tion weight and color is on the far right. The darker the color, the
more important the scenario elements are. The running direction of
the vehicle is from left to right. Therefore, the attention weight of
the rightmost border (that is, the destination of the vehicle) is very
high. In the original scenario, the dark gray vehicle in the upper
left corner is the control vehicle. Because the driving rule of the
simulation software is to keep left, the fast lane is located in the
right lane of the road. In this case, there are three driving strategies
(straight ahead, left turn and right turn). However, left turn will not
get any positive benefits, but will also be punished because of the
penalty factor of frequent lane changing behavior. Therefore, there
is no attention point on the left road, which is redundant for the
scenario. In order to compare the benefits of straight ahead decision
and right turn decision, the attention network predicts the driving
trajectory of control vehicles in the original lane and the right lane
after two frames, and allocates high attention, which represents
the front and rear of the vehicle at a certain time in the form of two
points. The prediction results are shown in the red box in Figure
10.

Trajectory prediction in scenario optimization is based on the
results of optimization in time dimension. This is incomparable
to the rule-based scenario optimization. In the spatial dimension,
the redundancy of the leftmost lane is optimized. The attention
mechanism also allocates the attention of the outermost lane line
corresponding to the obstacle vehicle to 0, as shown in the red box
of Figure 11

The understanding is also very intuitive, because the existence
of obstacle vehicles has played a role similar to the lane line, and it
is impossible for autonomous control vehicles to cross the obstacle
vehicles and drive out of the lane, so this part is redundant for the
scenario. There shouldn’t be too much attention.
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Figure 9: Attention Visualization.

Figure 10: Trajectory Prediction in scenario.

The above scenario is just a driving scenario of vehicles in the
highway environment. According to the experimental results, we
can see that the deep reinforcement learning network embedded
with attention mechanism can not only optimize the redundancy of
time and space. At the same time, high attention will be allocated to
the blind spots that we usually don’t pay attention to but play a role
in the overall traffic efficiency, so as to improve the decision-making
effect.

5 CONCLUSION
This paper proposes a deep reinforcement learning lane changing
decision method based on embedded attention mechanism, namely
CADQN network. In this algorithm, attention mechanism is intro-
duced into lane changing decision-maker to realize the attention
weight allocation of scenario traffic elements. So as to complete the

Figure 11: Lane Line Optimization In Scenario.

scenario optimization and improve the decision-making effect. Sim-
ulation results show that compared with the deep reinforcement
learning decision-maker without attention mechanism, this algo-
rithm can improve the reward of decision making. Furthermore, in
the comparative experimental study under different traffic density,
it can be seen that CADQN can improve the overall traffic efficiency
of the whole traffic system, and the improvement effect is more
significant with the increase of traffic density. Finally, through the
visualization of the attention matrix, we find the blind spots that
human driving habits can not pay attention to, but the scenario
components that play a role in the overall traffic efficiency. The
experimental content of the algorithm can provide guidance for
scenario optimization before lane change decision.
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